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Abstract— Human-Robot Collaboration (HRC) aims to de-
velop robots that provide assistance to human workers while
performing physical tasks. Such assistance comes in the form
of supportive behaviors that are different from the actions
part of the task, and that are meant to help a human worker
more effectively accomplish the task. Learning how to provide
useful behaviors that are tailored to a human peer represents
a difficult challenge. This is due to the need of large amounts
of training data in the form of real world observations that
include information about such preferences. This data needs to
encode not only the structure and progression of the task, but
also the different workers’ preferences with respect to when and
what assistance the robot should provide. Our work separates
the challenge of learning a model of the task (which requires a
large amount of training data) from that of learning supportive
behavior preferences for the interaction (which has obvious
restrictions for the number of user-provided demonstrations
to which we have access). We first learn a hidden Markov
model (HMM) from a training set consisting of observed human
workers performing the considered task in simulation. We then
use this model to predict, while observing the human peer,
what supportive behaviors a robot should offer throughout
the task. Building upon the hidden state representation, our
system is able to learn the supportive behaviors based on as few
as five user-annotated demonstrations, learning a personalized
supportive behavior model. We evaluate our system on a user
study with 14 participants, and show results on par with
human-level prediction for the task.

I. INTRODUCTION

One of the main goals of robotics research is to develop
robots that adapt to novel situations, without the need to
be pre-programmed. Human-Robot Collaboration (HRC) is
an area of robotics that aims to make such robots useful
in the context of teamwork. Today, state-of-the-art robots in
industry work in isolation from humans, performing precise,
repetitive tasks. HRC pushes for a transition to adaptive,
collaborative robots that are capable of offering assistance
to a human worker throughout the execution of a task.

When developing adaptive robots for HRC, the goal is
to provide assistance to the human, rather than aiming for
the robot to autonomously execute the full task. This goal
is motivated by two reasons. First, the type and level of
knowledge, as well as the training required for the robot
to complete the task on its own, is difficult to establish and
collect. Second, despite significant advancements in areas of
robotics such as manipulation [1], [2], robots are still far
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Fig. 1. The target domain is human–robot collaborative task execution.

from having the fine manipulation capabilities required by
tasks such as furniture assembly (e.g., using a screwdriver
on a small screw). We thus desire robots that provide those
types of behaviors well-suited for a robot, while allowing the
human worker to perform actions better suited for a person.
For example, a robot might provide supportive behaviors like
stabilizing a component or bringing a heavy part required for
assembly [3], while the human worker can execute actions
such as screwing, which requires higher dexterity and a
particular type of adaptation to the task.

There has been significant progress made in robotics,
both for learning models of tasks, and for investigating
how to integrate human preferences with respect to these
tasks. The former includes work such as skill acquisition [4],
obstacle avoidance [5], navigation [6], and so on. The
latter investigates human anticipatory and preference-based
models, such as human anticipatory control for robots [7],
joint-action model learning in HRC [8], communication for
task allocation [9], and others. This work allows us to build
models of tasks and even take into account user preferences
with respect to task structure. However, it is difficult to use
such models to learn personalized models of what kind of
assistance the robot should provide throughout the task.

Learning when and what kind of assistance to provide
to different users poses non-trivial challenges. A human
worker might prefer the robot to always stabilize a particular
component like the seat of a chair while they are performing
a screwing action. Another worker might instead wish for



the robot to utilize that time to bring a screwdriver for the
next step of the assembly. These different options are not
the typical task preferences referring the order in which task
sub-states are executed (e.g., perform assemble leg 1 before
assemble leg 2 ); rather, they represent different supportive
behavior preferences on the part of the users (e.g., provide
supportive behavior stabilize component for the assemble
back sub-state but not for the assemble seat sub-state).
We can only learn such preferences when we collect data
about the supportive behaviors themselves, and not by simply
learning a model of the task via observing human workers
perform the task without assistance. The proposed system
is thus intended for scenarios that can feasibly provide us
with relatively high amounts of trajectories of a worker
completing the task on their own, but that make it difficult
to collect many observations that include supportive behavior
information. In this paper, we provide a solution for learning
personalized supportive behavior models for different users
while building upon a common model of the task across
all users. This provides us with the flexibility to build upon
existing techniques of modeling tasks in HRC, while only
needing to train an extension of this task model in order to
learn supportive behaviors tailored to different user needs.

We employ hidden Markov models (HMMs) to encode
information about human action patterns during task execu-
tion, with no information about what supportive behaviors
users would desire. By doing so, our method is able to
implicitly yet flexibly represent the relevant structure of
the task. We generate in simulation a pool of observations
similar to what could be acquired by mounting sensors
in a factory, while workers perform their usual routines.
Such unsupervised trajectories would not include information
about the assistance a robot would need to provide. We
then assume access to a very small number of user-provided
demonstrations (five) that annotate trajectories of the task
with labels for the supportive actions the human would like
the robot to provide. We employ these user labels to learn a
model of the supportive behaviors with respect to the actions
we have observed workers perform during training. This
allows us to predict what supportive behaviors the robot
should provide that are tailored to an individual worker.

We test the proposed system in a study with n=14
participants. We present results showing that we achieve
predictions on par with human-level performance by using
only five user-provided demonstrations. We also present the
versatility of our system by asking participants to change
their preferences for what supportive behaviors the robot
should offer at different points throughout the task, and show
that our model separation allows us to train on these new
preferences quickly, with similar human-level results.

II. RELATED WORK

In robotics, HMMs are widely utilized. Work in this
area includes HMMs for acquiring behavioral models for
robots [10], learning robot trajectories acquired from demon-
stration [11], and having a robot learn and reproduce gestures
by imitation [12].

Work on model learning in robotics spans a wide range
of topics. This includes learning high-level representations
of navigation tasks for mobile robots from observations and
use the learned model for the robot to engage humans for
help during task execution [6]. Further work outlines the
application of a neural network model to control an industrial
robotic manipulator generation [13], and performing task-
level learning that can refine the task command based on
the system’s error metrics, with an application to ball throw-
ing [14]. Our work seamlessly builds upon these types of
models and extends them to provide an important and novel
capability for robots in HRC scenarios: building personalized
models of supportive behaviors. With the current work, we
build on the model we presented in [15], and present our
results as part of a study conducted on a real robot.

A final and extremely important corpus of related work is
composed of research in the HRC domain. This research
makes significant contributions by integrating information
into the models about user preferences and user-intention
prediction. Relevant work in this area that is based on the
use of HMMs includes, among others, gesture recognition
for human-robot interaction [16], and understanding human
intentions for autonomous mobile robots [17]. Reinforcement
learning has been utilized for enabling collaborative learning
between a robot and a human [18], and for leveraging the
way in which people teach robots [19]. Further important
work includes interactive learning in HRC [20], manipula-
tion planning for HRC [21], anticipatory robot control for
HRC [7], action-selection mechanisms for improving human-
robot fluency [22], [23], learning models of joint actions for
HRC [8], and improving robot performance as a collaborator
in HRC [24], [9].

Such models do not provide us with the means to build
supportive behaviors for different users. This is due to
the fact that models that are trained on interaction data
need a prohibitive amount of such data in order to learn
anything meaningful, and models that are trained on task
demonstrations only do not typically include interaction data.
Our solution tackles these challenges by employing data
hungry models only to represent the task. We then extend this
task model to account for the supportive behaviors that can
only be learned by collecting expensive user-provided labels.
This allows us to train new supportive behavior models by
re-utilizing a common task model and the need for a very
low number of user-provided labels.

III. PROBLEM FORMULATION

In this paper, we focus on developing robots able to offer
support to a human worker throughout a task. Our goal is
to enable such robots to predict, in a way that is tailored to
individual users, when this support is needed. To this end,
we target an HRC scenario where a robot works side-by-side
with a human partner to achieve a shared goal, specifically
the collaborative assembly of furniture. In this work, we
employ a model set for HRC that has been developed in
related work [25]. It is tailored to collaborative experiments,
and it explicitly exposes a variety of experimental variables



for the evaluation of HRC algorithms (e.g., task complexity,
respective roles of robot and human in performing the task,
etc.). For the purposes of this work, we focus on a single
assembly task, namely a chair (see Fig. 1).

We target the Baxter Research Robot (cf. Fig. 1), a
robotic platform commonly used in HRC. These platforms
are usually characterized by limited capabilities compared
to those of humans; they can execute pick-and-place actions
and holding of components to facilitate actions performed by
the human. They cannot perform complex assembly tasks by
themselves, but they are well-suited to support a human.

We consider that the robot can provide a set of supportive
behaviors consisting of a total of 10 behaviors, including
no action. Table I presents a sample trajectory generated
from the task together with two different sets of supportive
behavior preferences, listing the action performed by the hu-
man together with the supportive behaviors the robot should
offer for that human action. For example, when the human
executes gather parts leg 3, the robot should perform two
supportive behaviors: bring back bracket and bring dowel.
The robot should aim to execute the exact behaviors labeled
for each step, without missing or adding anything. These
supportive behaviors represent actions the robot can take
throughout the task to help the human efficiently complete
the task. In particular, we consider the types of actions the
human takes to be different from those the robot can take.
For example, an industrial arm can easily bring different
labeled parts from a pool of assembly components onto the
workspace, while the human arranges them and performs the
actual assembly, tackling actions that need more dexterity.
This represents a realistic HRC scenario, where each of the
agents performs actions for which they are best suited.

In order for the assistance provided by the robot to be
useful to an individual user, our aim is for the robot to
learn how to do so in a personalized manner. One human
worker might prefer the robot to hold both the seat and the
back while they perform the assemble action for that part
(depicted in Table I under the assemble seat and assemble
back human actions). A different user might instead wish the
robot not to provide a hold behavior for the seat or the back,
preferring hold for gather parts back top and for the third
time gather parts leg happens (depicted under the assemble
seat, assemble back, gather parts back top and gather parts leg
1 actions). In this work, we set forth to learn this spectrum
of user preferences by using only a small amount of user-
provided labels. This is a central concern in collaborative
scenarios, as user demonstrations are expensive to obtain
in large numbers. The results presented in this paper are
obtained from only five user-labeled demonstrations.

Smooth collaboration requires that the robot provide sup-
portive actions when the human needs them. This requires
anticipation since actions and, specially, robot actions take
time to happen. For instance, if the robot is to help a human
perform a screwing action, we need to predict the action in
advance such that the robot can bring a screwdriver to the
human in time. Here, we focus on the objective of predicting
the human’s needs with an anticipation time of ∆t.
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Fig. 2. The extended HMM model used in the paper. In addition to a
regular model learned from observation of all the users ((Yt)1≤t≤T ), we
consider user preferences, represented by the variables Ut . We assume that
the user preferences only depend on the hidden state and that they are only
observed on a limited number of examples.

IV. PREDICTIVE MODEL

We propose a method of separating the problems of
learning a task model from that of learning personalized
models of supportive behaviors for the interaction. This
technique allows us to leverage learning a single, robust
task model that does not need interaction data to then tailor
the supportive behaviors the robot should offer during the
interaction to different users.

Our approach starts by first learning a limited set of
activity patterns and transitions between them from observa-
tions of human behaviors. In this paper, we implement this
approach with a hidden Markov model (HMM). During our
second phase, we learn to predict (from the hidden states)
what supportive behaviors are useful to the human worker.
The choice to employ an HMM to model our task is based
on the strong mix of the model’s simplicity and power of
predicting into the future given past observations. In partic-
ular, this means we can choose to model our task by using a
higher or a lower number of hidden states. The former would
provide us with a better representation of the task itself but
would require more user preference labels in order to achieve
high quality predictions for supportive behaviors, while the
latter would have a more limited representational power
while requiring a small amount of user-provided labels. This
is a trade-off we analyze further in Section VI.

Our model of the personalized supportive behaviors con-
sists of an extended HMM, presented in Fig. 2. This extended
HMM is based on a basic HMM that models our task. This
basic task HMM is trained by using only the task trajectories,
without any information about supportive behavior labels
(i.e., interaction data). The extended HMM that models our
supportive behaviors is created by augmenting the task model
with additional variables corresponding to user-preferred
supportive behaviors, and is trained via adding a low number
of task trajectories that are labeled with supportive behavior
preferences. We denote by Ht the hidden state at time t, by
Yt the observations, and by Ut the preference of the user for
some of the supportive behaviors.

A. Main Task HMM

To represent our task in a simple yet powerful way, we
model our emission probabilities with Bernoulli distributions.
We assume access to a training set consisting of observations,
each in the form of a vector of features. In the following,



TABLE I
SUPPORTIVE BEHAVIOR LABELS FOR A SINGLE TRAJECTORY BASED ON TWO DISTINCT SUPPORTIVE BEHAVIOR PREFERENCE SETS

Supportive behavior preference set 1 Supportive behavior preference set 2

Human action Supportive behavior labels Human action Supportive behavior labels

gather parts leg 3 [bring back bracket, bring dowel] gather parts leg 3 [bring back bracket, bring dowel,
bring screwdriver]

gather parts leg 4 [bring back bracket, bring dowel] gather parts leg 4 [bring back bracket, bring dowel]
gather parts leg 2 [bring front bracket, bring dowel, gather parts leg 2 [bring front bracket, bring dowel]

bring screwdriver]
gather parts leg 1 [bring front bracket, bring dowel] gather parts leg 1 [bring front bracket, bring dowel,

hold]
gather parts seat [bring seat] gather parts seat [bring seat]
assemble seat [hold] assemble seat Ø
gather parts back right [bring top bracket, bring dowel] gather parts back right [bring top bracket, bring dowel]
gather parts back left [bring top bracket, bring dowel] gather parts back left [bring top bracket, bring dowel]
gather parts back top [bring back, bring long dowel] gather parts back top [bring back, bring long dowel, hold]
assemble back [hold] assemble back Ø

we assume demonstrations are of length T and that the
features are binary, although the proposed approach is not
at all limited to such constraints. We denote as n the
number of such features so that each observation yt ∈ {0,1}n.
We employ features that are based on the presence versus
absence of objects in the workspace, with a 1 denoting
presence, for a total of 19 features. We train the model
with the Baum-Welch algorithm, implemented on top of
the Python hmm learn library. Baum-Welch is the standard
HMM algorithm for learning the model parameters (i.e.,
in our case, the Bernoulli probabilities and state transition
probabilities). In Fig. 2, this corresponds to learning the
emission probabilities P(Yt |Ht), as well as the transitions
P(Ht+1|Ht) and the initial distribution over hidden states.

B. Personalized Supportive Behavior Model

We represent our supportive behavior preferences by intro-
ducing variables Ut , which depend only on the hidden state
at time t (i.e., they do not depend on the observed Yt ). The Ut
are binary vectors of dimension npreferences in which each co-
ordinate is Ut, j = 1 if the preference is that the robot provide
the supportive behavior j and 0 otherwise. The separation in
the model enables learning the preference probabilities from
a different number of samples than the HMM. In particular
these are user-provided labels that are more expensive to
collect than pure observations of a worker’s behavior. If the
HMM correctly captures the relevant information about the
task progression, only a few examples of user labels are
needed to predict the preference, since we are relying on
the quality of the decoded hidden state.

In this experiment we further approximate the behavior
preferences as being independent knowing the hidden state.
We model these preferences with Bernoulli distributions, like
we do for the observations. We, however, assume that the
HMM has already been learned when we proceed to train
the preference model. Each labeled interaction i provided
by the user consists in a trajectory of observations together
with user preferences for the supportive behaviors, that is
a list of feature vectors (yi

t)1≤t≤T and a list of preference

vectors (ui
t)1≤t≤T . We start by decoding the trajectories with

a soft Viterbi algorithm (equivalent to an E-step in Baum-
Welch), and then estimate the probabilities for the prefer-
ences similarly to an M-step, by using the probabilities over
the decoded states. More precisely, if we have n trajectories:

P(Ut = u|Ht = k) =
∑

n
i=1 ∑

T
t=1 P(H i

t = k|yi
1...T )×1ui

t=u

∑
n
i=1 ∑

T
t=1 P(H i

t = k|yi
1...T )

. (1)

C. Predicting supportive behaviors

We are interested in predicting the supportive behaviors
that the robot can provide to the human worker with an
anticipation time of ∆t. In order to predict into the future,
we employ the standard soft Viterbi algorithm to decode
the hidden state until the current time step, knowing the
observations until that step. In other words, we compute
P(Ht = k|y1...t), namely the probabilities of being in each
hidden state given only the past observations. We can then
compute the likelihood of each hidden state at a given ∆t
in the future using the HMM, and from there the user
preferences for that time step. In particular, if PHt+1|Ht is the
matrix of transition probabilities, the transition probabilities
after ∆t steps are given by

PHt+∆t |Ht = P∆t
Ht+1|Ht

(2)

and hence

P(ht+∆t |y1...t) = ∑
ht

P(ht+∆t |ht)P(ht |y1...t) (3)

P(ut+∆t |y1...t) = ∑
ht+∆t

P(ut+∆t |ht+∆t)P(ht+∆t |y1...t). (4)

V. MODEL EVALUATION

To evaluate our model we follow four steps: i) we generate
a training set consisting of task trajectories without support-
ive behavior preference data in order to train the main task
HMM, and we train the main task model on this set. We refer
to this training set as set T henceforth, and explain the details
in Section V-A; ii) we choose a small number of trajectories
from the training set generated for the main task, and label



Fig. 3. Hierarchical task model (HTM) representing the chair assembly task. Each leaf is an atomic subtask; each node composes subtasks that need to
be achieved in sequence (in a given order, →) or in parallel (in any order, ‖). For each atomic subtask, the human worker has preferences over supportive
behaviors that the robot might provide.

them with supportive behavior preferences, experimenting
with the exact number of trajectories to pick. We use this
training set to train our personalized supportive behavior
model. We refer to this training set as set SB henceforth,
and explain the details in Section V-B; iii) we decide a
mechanism for computing errors for our model (detailed in
Section V-C), and we optimize parameters for all of the
above during our simulation experiments (cf. Section V-
D); iv) we use the optimized model from our simulated
experiments (i.e., the trained HMM and the trajectories from
set SB ) to test with real users (Section V-E).

A. Training the main task HMM

In order to study the behavior of the learning algorithm
on consistent and intuitive trajectories, we consider a task to
be based on a hierarchical task model (HTM), as defined in
[26]. HTMs represent tasks as trees of subtasks of varying
complexities and abstraction. Each node represents a subtask
and is itself a combination of subtasks following a sequence
or parallel operation. Subtasks composed in sequence have
to be executed in the order in which they appear as children
of the node. Parallel combinations of subtasks can be exe-
cuted in any order. Leaves of the tree are atomic subtasks.
Typically, HTMs are compact representations of a task but
they can correspond to complex constraints on task execution
orders. In particular, parallel combinations of n nodes enable
n! execution orders. Our task represents a real world chair
assembly task that is composed of a sequence of two main
blocks, each of which has children that can be executed in
parallel. The network of our task can be seen in Fig. 3.

To train our HMM in simulation, we construct training
set T consisting of 350 trajectories generated in accordance
with the presented HTM, which can generate a total of
96 distinct trajectories. In particular, given the HTM, we
generate valid trajectories that are composed of leaves from
the tree. We further assume that each leaf corresponds to
a human activity, which generates the feature values based
on object presence in the workspace. We only use the HTM
in order to generate trajectories consistent with the structure
of the task, which would be naturally observed in a factory

environment. We do not learn, or insert knowledge about
the HTM into the system at any point. In a real-world
scenario, this step corresponds to gathering observations of
human workers performing assembly tasks in their natural
environment, without a robot providing assistance.

B. Training our personalized supportive behavior model

To train our personalized supportive behavior model, we
need to choose a small number of trajectories from training
set T and obtain user-provided labels for the supportive be-
haviors desired for these trajectories. We call this training set
SB. For our simulation experiments, we consider a user with
particular behavior preferences, and label our trajectories in
accordance with these preferences. This provides us with set
SB. During our user study, we perform trials in accordance
with this set SB, and we also allow participants to choose
their own preferences, by labeling the same trajectories and
creating a personalized set SB’.

For each set SB, we assume stationarity of preferences
(e.g., if a user prefers the screwdriver be brought for leg 3,
we assume this to always be true for that preference set). Our
goal is to minimize the number of trajectories for SB, since
these always need to be labeled by users. We thus experiment
with different numbers for the size of SB. When training
with three or five, we use a decided-upon set of trajectories.
These are chosen to cover different trajectories from our
HTM, although our results are similar when we pick these at
random. When training with more than five trajectories for
parameter optimization, we pick these at random from our
training set. In a real-world scenario, this step corresponds to
asking human workers to label a set of task trajectories with
their preferences for what supportive behaviors they would
want a robot to provide during the task.

C. Decision model and computing errors

We use a model of an agent that takes all the supportive
behaviors with probability greater than 0.5 at each time step.
The probabilities are computed as explained in Section IV-
C, with ∆t = 1, meaning the agent predicts one time step in
advance. In this work, we choose ∆t = 1 because we predict
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Fig. 4. HMM parameter optimization procedure. This graph presents training eight different models corresponding to 21 = 2, 22 = 4, ..., 28 = 256 total
number of hidden states, and running the training for each model 10 different times, each tested with a different HTM trajectory. The procedure was
repeated for 3, 5, and 10 user-labeled trajectories, respectively. The x-axis presents the number of states equidistant for better visualization. We picked the
HMM that provided us with the best trade-off regarding number of user demonstrations vs. number of hidden states.

for discrete time steps in terms of task progression, and
each task step is essential for task completion. However, our
model extends to any ∆ value, and interesting investigations
are possible, for example where we combine predicting more
steps into the future with using macro-actions that span
multiple time steps. We do not tell our model how many
supportive behaviors it should choose at each time step.
Rather, we automatically choose only those behaviors that
have high certainty (i.e., greater than 0.5).

We count both false positive and false negative errors when
computing the total number of errors per episode. If the robot
missed bringing the dowel when it should have and brought
the top bracket when it should not have, we count 2 errors
for that step. For any parallel nodes (e.g., we can either start
the assembly with the back or with the legs), either choice
the agent performs is correct. We also allow users to change
the order for parallel actions whenever they choose to do so.

D. Choosing model parameters

HMMs are prone to local optima. To choose our param-
eters for the user study, we ran a total of eight different
HMMs, with increasing number of hidden states, using a
single SB set composed of trajectories distinct from those
we test on during our user study. We chose the number of
hidden states as increasing powers of 2, starting with 21 = 2
and ending with 28 = 256 hidden states. Fig. 4 shows our
training process with 3, 5, and 10 user-provided labels.

As the figure highlights, the higher the number of hidden
states, the more power the HMM has to model the task.
However, when we reach a large number of hidden states,
we need more and more user-provided labels in order to
scale up to the number of model parameters. This is revealed
by the two curves seen in the figure for 3 and 5 labeled
trajectories, where we notice the number of errors going
down when the number of states initially increases (due to the
higher modeling power of the HMM), but starts to increase
again when the number of hidden states increases beyond the

modeling power of the labeled trajectories. The curve for 10
labeled trajectories does not show this pattern in the figure,
but we posit that with 10 trajectories, the turning point will
happen with a higher number of hidden states.

We thus chose the HMM that provided us with the best
trade-off in terms of necessitating a low number of labels
and a low number of hidden states, resulting in 128 hidden
states and the use of 5 user-labeled trajectories. Compared to
choosing 256 hidden states with 10 labeled trajectories or 64
hidden states with 3 labeled trajectories, this choice results
in the lowest average number of errors (0.20) and lowest
standard deviation (0.60).

E. Testing personalized supportive behavior models on robot

We run our experiments with the task presented in Fig. 1,
with the HTM from Fig. 3. Our experiment consists of two
phases, as follows.

During the first phase, we provide an interactive survey
to each participant. We provide them with three labeled
trajectories, two of which can be seen in Table I. The partic-
ipants are given a few minutes to consider the trajectories,
and they are then asked to label five new trajectories with
supportive actions based on the three examples, by thinking
of the behaviors to be offered for the next time step as
the task progresses. This task represents the equivalent of
the prediction problem for our robot, with the same amount
of information given (when we train on three trajectories).
We then offer two more examples to the participants, which
are based on the same task and same preferences. The
new examples do not contain any additional information,
but are meant to solidify the information already present
in the previous examples. The initial three examples cover
all the relevant information for the task and are not chosen
to obscure any particularities of the preferences. The final
provided set of five trajectories represents the same set SB
we use to train our model. Finally, the participants are asked
to label another set of five new trajectories. We consider the



first set to be a habituation phase with the task, and so we
present only the results from the second set.

During the second phase, we confirm with participants
the structure of the task and the set of preferences they just
predicted for. We now ask them to play the part of the human
worker, and allow the robot to make the predictions, while
they assemble the chair. We have each participant assemble
the chair twice with this set SB of preferences. We then allow
participants to switch their preferences and choose a new
set SB’, and perform two more assembly tasks on the new
set. The trajectories are the same five ones the participants
were given during the previous phase. We need only label
these five trajectories according to the new preference set
expressed by each participant in order to tailor the experience
to each participant’s liking. We perform this phase with a
different set of preferences to show that our system allows
for facile and quick labeling of the necessary trajectories to
tailor assistance to individual preferences.

During the assembly phase with the robot, participants
can always switch to a different action whenever a parallel
alternative exists. For each time step during our task, the
robot first makes its predictions for the following time step,
and then executes the predicted behaviors in sequence. If the
participant is satisfied with the behavior, he or she presses
a green button on the robot arm that causes behavior to be
completed; otherwise, the participant can press a red button
on the arm that causes the behavior to be cancelled (i.e.,
the robot takes back any objects to their original pick-up
location or stops executing the behavior in the case of hold ).
Participants are told to press the red button either in the
case of a desired switch (we do not count the press as an
error), or in the case of an incorrectly predicted and executed
behavior on the part of the robot (we count the press as an
error). Whenever the green button is pressed and an object is
successfully released, the system automatically updates the
features based on the new object presence.

After the robot finishes executing the predicted behaviors
for a step, it asks the participant if it has missed any
behaviors. The participant has three options: 1) state that
the robot did not miss any behaviors, 2) ask for a new
action due to a previous switch to a parallel action, or
3) ask for an action the robot missed due to incorrect
predictions. In the first case, the interaction proceeds to the
next step. In the latter two the experimenter, through a web
interface, gets the robot to execute the missing actions before
proceeding to the next step. The errors counted during the
task execution are used only to evaluate the model, and not
for online learning, although this would be an interesting
future research direction.

VI. RESULTS AND DISCUSSION

In this section, we present our results on the main set
of user preferences, on the new per-user basis preference
set, and compare them with human-level prediction for our
task. Fig. 5 shows the average number of errors for the robot
trials on the main set of preferences and on the user-specified
set of preferences, as well as the human-level prediction in
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Fig. 5. Average number of errors for the main supportive behavior prefer-
ence set SB, the user-specified set SB’, the human predictions (interactive
survey), and a random baseline.

comparison to a random baseline for our task. We computed
the random baseline by using information about the task
structure in the following way. For a total of 10 time steps
for one task trajectory, we used the number of times we
need to choose 1, 2, or 3 supportive actions per time step to
compute an estimate of how many behaviors to choose at that
step. Although our predictive system does not receive this
information and automatically chooses only those predictions
it has high confidence about, we wish to show the power
of our model by computing a baseline that uses some task
knowledge. After choosing the number of behaviors for the
current step, we proceed to randomly choose those behaviors
from the available set. For each step, we sample without
replacement, since our system only considers different sup-
portive behaviors and cannot pick the same one twice for
a single step. We then sample with replacement for the
next time step. We compute the total number of errors by
following the same procedure as described in Section V. The
average for the baseline is 24.68 (s.d. 2.84).

We use the same evaluation in order to compute human-
level prediction for our task: we only utilize the five trajec-
tories participants have predicted after having seen the five
examples that are also provided to our system. We compute
errors similarly to the robot condition: when the person
incorrectly predicts a supportive behavior (in accordance
with the preference set), we count this as an error. Since
these trajectories represent the second set participants go
through, they have practice performing the prediction; hence
this represents a high bar to compare our system against.



The average for human-level performance is 0.97 (s.d. 1.12).
Fig. 5 shows that our system performs on par with this
human-level prediction both for the initial set of preferences
we ask users to operate with, and for the newly specified
preference sets. The main set of preferences has an average
of 0.46 (s.d. 1.05), and the average for the number of errors
averaged over all of the newly specified preference sets
across all participants is 0.61 (s.d. 0.86).

To make sure that many possible distinct trajectories were
covered, all participants were reminded at the beginning of
each assembly that they can always choose to switch to
a different order for parallel actions. The data reveals that
participants switched 11 out of 28 times and 10 out of
28 for the main and specified preference sets, respectively.
These switches were performed for the main chair assembly
parallel node from our HTM (Fig. 3). We also experienced 10
switches for the mount legs parallel node. The total number
of different newly specified preference sets for the last two
runs with the robot amounted to 7 different new sets.

VII. CONCLUSIONS

Our research focus is to develop robots that can adapt to
HRC settings in a robust and seamless way. In this paper, we
present a way of learning personalized supportive behavior
models that leverage a single, robust model of the task, and
show that our system achieves human-level prediction for a
real HRC task via a user study.

Although we allowed our system to occasionally miss
object-presence features when manipulation errors occurred
during our study, we are excited to extend our model for
handling noisier observations like the ones provided by a
motion capture or computer vision system. We also look
forward to experimenting with different tasks. We have
already started testing how well we can transfer knowledge
from one task to a related, but previously unseen task, and
are excited to present these results in future work.
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