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ABSTRACT
This work focuses on developing adaptive human-robot in-
teraction systems that work with users over long periods of
time to achieve a common goal that is beneficial to the user.
The system adapts to the user by modeling his or her moti-
vational state in order to achieve better cooperation during
the interaction, which in turn could lead to higher levels
of goal achievement. The particular scenario we focus on
is that of a robot companion interacting with adolescents,
helping them succeed at achieving daily physical activity
goals. The robot does so by modeling the user and adapting
motivational strategies best suited for each user. The key
question we are investigating within this collaboration con-
text is: how can the robot use long-term interaction to create
and maintain a user model of its interaction partners that
allows for such an adaptation? These models allow for the
interpretation of “why” and “how” a user succeeded or failed
at achieving a physical activity goal, and are based on both
physical activity data obtained from wearable sensors (such
as wristband devices) and information acquired by the robot
from its interaction partners. This interpretation is central
to an adaptive human-robot interaction system that socially
manipulates users towards shared goals.

1. INTRODUCTION
Cooperation is central to human relationships and societal
structures and is based on social norms that can be applied
in a peer group, family, organization, or entire society [11,
22]. Cooperative behaviors are at the heart of human exis-
tence, and are beneficial to individuals and to society as a
whole. Most cooperative behavior tasks assume both par-
ties are equally motivated and involved in achieving a com-
mon goal. Some cooperative behavior tasks, however, face
the challenge of having one of the parties become less moti-
vated over time even when having the same high level goal.
Examples include people who work together with a weight
loss coach with the purpose of loosing weight, or people who
work together with a personal trainer to reach a fitness goal.
Even though they engage in cooperative behavior in order to

reach a goal that personally benefits them, people become
less motivated during the process of achieving it. Psychol-
ogy research shows that cooperative behavior can be pre-
dicted and that positive emotion and low levels of inhibition
are important for achieving higher levels of cooperation [22].
Modeling users’ motivational state is thus of paramount im-
portance if we are to develop adaptive robots that aim to
help users achieve goals through cooperative interaction. In
our current work, we focus on modeling users’ motivational
state in the context of helping them stay engaged in high
levels of physical activity.

The benefits of physical activity are well known, as research
shows that daily physical activity has wide-ranging benefits,
from improving cognitive and academic performance [28] to
helping with bone development and health [7]. Our work
seeks to sustain these benefits with robot home companions
through personalized, data-driven coaching.

The first comprehensive guidelines on physical activity for
individuals ages 6 and older was released in 2008 by the U. S.
Department of Health and Human Services. The guidelines
state that children and adolescents should aim to accumu-
late at least 60 minutes of moderate- or vigorous-intensity
aerobic physical activity on most days of the week, prefer-
ably daily [1]. Current evidence shows that levels of physical
activity among youth remain low, and that levels of physi-
cal activity decline dramatically during adolescence [2]. In
2008 it was found that only 8% of adolescents were active in
moderate- to vigorous-intensity activity on 5 days per week
for at least 60 minutes each day [27]. These data show the
importance of developing methods to keep adolescents on
track to achieving daily recommended levels of physical ac-
tivity. With this in mind, we seek to develop a human-robot
interaction system that motivates adolescents to engage in
physical activity on a daily basis.

2. BACKGROUND AND RELATED WORK
There exists a great deal of work concerning health and well-
being applications, such as commercial systems that support
goal-setting and reflection for the user, and employ motiva-
tional strategies for achieving goals [18], [12]. Other prior
work explores tracking of long term goals along with factors
that have an important role in goal-setting theory [5].

In the field of HCI, wearable sensors are being used in the de-
velopment of persuasive technologies that motivate healthy
behavior. Work in this area is wide, ranging from activity



recognition systems that employ this information to keep
users engaged in physical activity [8] to how such applica-
tions should be evaluated [14]. Work related to contextual
information playing a role in daily physical activity is scarce,
and focuses on showing that providing users with such infor-
mation (activity, location, people) increases their awareness
of physical activity [17].

Social robots have also been used to promote and keep users
engaged in physical activity. Work in this area touches on
investigating the role of praise and relational discourse and
that of physical vs. virtual embodiment [10], on how main-
tain engagement in the weight loss domain [13], and on how
users judge the robot’s capabilities and competence when it
takes on the role of a fitness instructor vs. that of a social
co-participant [25]. The feasibility of using a SAR (Socially
Assistive Robotics) approach to keep children aged 5 - 8
engaged in a three-week long interaction with a robot that
taught them how to make healthy food choices has also been
investigated [23]. The study highlights that children en-
gaged with the robot throughout the interaction, respond-
ing to its questions and becoming engaged with the task
presented to them.

To date, however, there is no system that ties together con-
tinuous remote monitoring of user physical activity obtained
from the wearable sensors with an assistive robot for daily,
long-term interactions. This link consists of the user model
that interprets the state of the robot’s interaction partner
in order to keep him or her on track to achieving the shared
goal. The interpretation obtained from the user model stands
as a basis for the adaptive system to learn which strategies
work best for an individual user.

The user model we are building employs an ontology-based
approach. Ontologies are defined as explicit accounts of
shared understanding in a given subject area and bolster
communication between users, experts, and technology sys-
tems [29]. Since ontologies are extremely useful in provid-
ing a formalism that specifies and clarifies concepts in a
domain and the relationships among them, their value for
health applications has been recognized by different lines of
research. Such research includes the investigation of com-
putational models of dialogue trying to simulate a human
health counselor [6] and that of computerized behavioral
protocols (CBPs) that help individuals improve their be-
haviors [16]. The former focuses on automating dialogue in
order to best simulate a human counselor, and is evaluated
via questionnaires with respect to how close it comes to em-
ulating a counselor’s empathy, naturalness, trust, etc. The
latter focuses on creating an ontology useful for modeling
PACE-Adolescent, a behavioral protocol aimed at promot-
ing healthy physical activity and dietary behaviors in ado-
lescents. To date, there does not exist a user model based
on an ontology which helps describe and interpret“why”and
“how” the user succeeded or failed at a given physical daily
goal.

3. METHODOLOGY AND DESIGN OF THE
SYSTEM

The robot platform chosen for this study is Keepon, a non-
mobile platform with four degrees of freedom, designed to
interact with children [15]. We are using a version of the My

Figure 1: Keepon Robot

Keepon toy, modified to be programmable, that can be seen
in Figure 1, above. The adolescent wears a wristband device
that keeps track of the number of steps taken throughout the
day. He or she interacts with a robot once daily, both di-
rectly and via a phone application. The application presents
an avatar for the robot - a virtual character with similar ap-
pearance to the robot - with simple, 2D animations. The
robot communicates with the user via pre-scripted snippets
of speech, using a text-to-speech module. The participant
is then given a choice between pressing a microphone icon
to speak to the robot or inputting an answer to the robot’s
question using the application interface (e.g. if the user is be-
ing asked for their name, they can press the microphone icon
and say their name or they can press a button which brings
up a keyboard for input). If the system cannot recognize
the speech, the application defaults to its native interface
for entering information.

The robot has a back-story, which unfolds over time in or-
der to keep adolescents engaged throughout the interaction.
The story is that the robot is a robot-alien, named EphyT,
that landed on Earth and needs the adolescent’s help to re-
turn home. The closer the user gets to accomplishing daily
physical activity goals, the more energy EphyT gains. Thus,
the robot and the adolescent engage in a collaborative in-
teraction, working together towards both helping the user
engage in high levels of physical activity and helping the
robot get back to its home planet.

The system is depicted in Figure 2, on the next page. When
the adolescent interacts with the robot, the back-story un-
folds. The robot then asks the user a series of questions.
These questions are meant to obtain extra information (de-
scribed below in the User Model section) about the user in
order to build and maintain a user model. The system then
acquires extra information from online sources about exter-
nal factors (e.g. weather or school schedule announcements)
and feeds both this and the user’s answers to questions as
inputs to the user model. The output of the user model,
which is discussed below, then becomes part of the input to
the adaptive system. The other input to the adaptive sys-
tem is the physical activity data the robot acquires from the
wearable sensor. This information is all fed into the adap-
tive system, described in the Motivational Strategies section
below, which outputs an appropriate motivational strategy
for the user. This strategy is used to shape the new physical
activity goal the adolescent needs to accomplish the next
day.



Figure 2: System Diagram

4. USER MODEL
The ontology our model relies upon needs to represent the
core concepts employed by professional trainers and health
counselors related to creating a profile of the user and keep-
ing track of how this changes over time. The creation and
validation of ontologies relies heavily on expert interviews
and validation. In this work, a user model is created based
on key elements influencing the achievement of a goal. These
are factors long studied in goal setting theory [20], social cog-
nitive theory [4], self determination theory [9], and theory
of planned behavior [3], and are discussed in the paragraph
below. The validation and identification of missing core con-
cepts and the relationships that exist among them is real-
ized via initial expert interviews, including personal fitness
trainers and health counselors. The user model is used by
the human-robot interaction system in order to adapt to
a particular user and choose the appropriate motivational
strategy for a user at every time step. A time step is defined
as a day since the robot interacts with the adolescent once
daily and sets daily physical activity goals.

The user model is based on concepts identified from liter-
ature review, as previously discussed. As can be seen in
Figure 2, the inputs for the user model are dichotomized
into two categories. The first represents the user’s answers
to questions asked by the robot about how the participant
felt while trying to accomplish the goal for the day. These
questions ask the participant about the key elements influ-
encing the achievement of a goal, namely socio-structural
factors, social pressure, self-efficacy, and attitude toward be-
havior. They are phrased in an easy to understand manner,
avoiding academic and arcane terms. Socio-structural fac-
tors are external elements that might have contributed to
the success or failure at a given goal and are classified into
facilitators and impediments, e.g. an adolescent’s particular
schedule for the day or items from the schedule that might
act as either a facilitator or an impediment in accomplish-
ing the physical activity goal. Social pressure models how
much pressure the adolescent felt while trying to accomplish
the goal for the day, given the particular motivational strat-
egy last employed by the robot. Self-efficacy models how
confident the adolescent felt while trying to accomplish the
goal. Finally, the attitude toward the behavior models how
much commitment the user had toward accomplishing that
particular goal.

The second input category represents external information
acquired by the system online about factors that might have
influenced the achievement of a goal. Such factors are in-
formation about the weather for the day or announcements
about school schedule changes and cancellations that the
system can acquire directly, without the need to ask the user.

This information is publicly available and can be acquired,
for example, from the school’s website or public weather
reports. This information is fed into the socio-structural
factors, into either the facilitators or impediments feature.
All of these core factors make up the feature vector for a
user, which contains numerical values based on the user’s
responses during the interaction with the robot.

The output of the user model is an interpretation of the
user’s state. As will be discussed in the next section, this
interpretation represents the state of the world (the state
the user is in) at that particular time step. The numerical
value of each feature is mapped onto one of three discrete
categories representing intensity levels, namely low, neutral,
and strong. This mapping is applied to reduce the state
space size and produce a more intuitive interpretation of the
user’s state. For example, a numerical value of 7 on a 1-to-7
scale for self-efficacy would be assigned to the“strong” inten-
sity level. While a finer grained representation may provide
a more accurate depiction of the state of the world, collect-
ing sufficient data to exploit this specificity isn’t feasible in
the current work. This would impose unrealistic sampling
constraints on our approach given that we obtain a limited
number of samples from participants and that the action
set we are using (the number of motivational strategies) is
quite small. The interpretation of a user’s state thus con-
sists of a feature vector containing intensity levels for each
feature. This interpretation is of paramount importance for
an adaptive human-robot interaction system whose aim is to
keep the user engaged in accomplishing a shared goal each
day since it represents the basis for choosing an appropriate
motivational strategy for the user.

In order to validate this user model and create an ontology
which links the core elements modeling a user to motiva-
tional strategies employed by experts, we utilize a formal
interview process. The interview thus aims to validate and
identify missing main concepts in the domain of motivation
for physical exercise and the relationships among them. The
interview is structured in two parts, as follows. The first
part asks the expert to list (1) important factors for keeping
students engaged in physical activity (corresponding to the
main concepts used in the ontology), (2) techniques used by
experts to identify the students’ motivational state (used to
create a mapping from users’ answers to questions to the
state-space), (3) information about students that helps the
expert interpret the students’ success or failure (used to val-
idate the user model’s output), and (4) strategies and tech-
niques employed by the personal trainer to keep students
engaged in physical activity (corresponding to the motiva-
tional strategies discussed above). The second part presents
the expert with the same categories, but with given answers
(drawn from literature). The expert is asked to indicate
how much he or she agrees with the specific answer, using
a Likert scale. The goal of this initial interview is to check
if experts indeed use concepts identified in literature as key
factors, acquire new key factors used in practice, and acquire
the basis for creating an ontology linking the user model to
the motivational strategies used by experts.

5. MOTIVATIONAL STRATEGIES
Our adaptive human-robot interaction system bases its deci-
sions of what motivational strategy to employ when setting



a daily physical activity goal on the user model’s interpreta-
tion of “why” and “how” the user was (un)successful at his or
her previous goal, i.e. the interpretation of the user’s state.
This is possible since the motivational strategies identified
from literature are associated with factors present in the
user model, e.g. “Intrinsic motivation is associated with the
desire to master a task and the satisfaction that comes with
that, whereas extrinsic motivation refers to completing tasks
solely as an ego boost, be it beating peers in a competition,
or receiving praise from a parent, teacher or colleague” [21].

Two main motivational strategies identified from literature
are strategies emphasizing cooperation and competition. Co-
operation strategies include setting out a physical activity
goal in a way that fosters cooperation between the user and
the robot. In [24] cooperative exercise game players lost
significantly more weight than players in the control condi-
tion, who gained weight over time. Competition can and
has been shown to be effective within exercise game inter-
ventions, e.g. for most participants in [19], competitiveness
presented a more stimulating challenge than cooperation.
Some of the participants, however, felt that competitiveness
was incompatible with the spirit of the game, creating the
need to develop an adaptive system that can model the pref-
erences of each user. Other motivational strategies are cur-
rently being researched and include making the user aware
of the importance of engaging in physical activity and of the
negative health consequences of not exercising, autonomy
support, structure, and involvement [26].

Our system adapts to an individual user by following a Q-
learning approach [30]. Q-learning can be used when an
agent wants to learn an optimal policy from its history of
interaction with the environment. The agent can typically
choose from a finite collection of actions at every time step.
Q value functions are state-action pair functions that esti-
mate how good a particular action will be in a given state,
i.e. what the return for that action is expected to be. The
value of taking action a in state s under a policy π is noted
as Qπ(s, a) and represents the expected return when start-
ing from state s, taking action a, and thereafter following
policy π.

In the current work, the actions the “agent” (in our case
the robot) can take are the different motivational strate-
gies discussed above, a ∈ {m1,m2,m3,m4,m5,m6}. The
states of the world are the interpretations of a user’s state,
as explained in the User Model section. Thus, a state is a
feature vector representing the interpretation of the user’s
state, and is defined as intrpt = [f1 f2 f3 f4 f5], where the
fis represent the features discussed above, which take val-
ues associated with intensity levels. The reward for a par-
ticular state is the difference between the number of steps
taken by the user and the number of steps set as the goal,
rt = #stepstaken − #stepsgoal. At time step t, the algo-
rithm observes the current state intrpt, chooses an action
at among the motivational strategies based on an ε-greedy
policy, takes the action, observes the reward rt as well as the
new state intrpt+1, and then updates the Q-value for the
state using the observed reward and the maximum reward
possible for the next state. The update is performed based
on the following formula: Q(intrpt, at) = Q(intrpt, at) +
α[rt+γ max

at+1

Q(intrpt+1, at+1)−Q(intrpt, at)], where α and

γ are both set between 0 and 1 and specify how quickly
learning occurs and how much future rewards matter, re-
spectively. The algorithm will thus work toward finding an
optimal policy, in order to maximize the expected return,
i.e. positive reward or small values for negative rewards.

6. FUTURE WORK
Future work involves validating the ontology and our ontology-
based user model. The system itself is to be validated as
part of a user study. The study will employ the adaptive
human-robot interaction system vs. a non-adaptive system
that interacts with adolescents in the same manner, daily,
but without adapting to the user.
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